Postgraduate profiles

If you need to edit your webpage, please go to: & login with your student number & Pheme password.




Max Bergmann

Phone: (+61 4) 6835 5216


Start date

Oct 2011

Submission date

Aug 2015

Max Bergmann

Max Bergmann profile photo


The role of potassium in the improvement of growth, water use and yield of canola under varying soil water conditions


Canola production in Western Australia is vulnerable to large variations in rainfall and frequent droughts. Recent poor seasons and price volatility have contributed to farmers’ perceptions of risk with canola and it can be observed that the area of canola grown often declines after periods of drought. Nevertheless, the total area of canola grown in Western Australia has still increased over the last five years and the importance of the crop has become even more apparent. An increase in the area of potassium -deficient agricultural sandy soils and the prediction of drier years in the Western Australian wheat belt has been identified. Therefore, more work is needed to enhance the current knowledge on plant physiological responses to potassium deprivation and drought stress particularly for canola.

The first objective was to measure drought tolerance of canola under different potassium treatments. The second objective was to understand the mechanisms controlling drought tolerance of canola by comparing the response of varying potassium treatments during a drying cycle as well as monitoring the ability to recover after the drought stress. The third objective was to observe any morphological differences of canola plants exposed to different potassium levels and water stress. In order to achieve these objectives, a range of climate chamber, glasshouse and field experiments were conducted growing Trigold canola plants in soils and hydroponically, mixed with increasing potassium concentrations, which were subjected to drought stress.

This project increased our understanding of the effect of potassium nutrition on the drought response of canola. A mild potassium deficiency (40 mg kg-1 soil K) only decreases the dry weight of canola significantly if plants are exposed to a long-term potassium deprivation. The ability to maintain a similar size over a range of applied potassium levels could be due to a morphological adaptation strategy of canola to manipulate root growth towards a smaller shoot:root ratio. The low K treatments had increased transpiration and stomatal conductance and reduced relative turgor pressure compared with high K, under drought stress. This was due to the stomata remaining open in the low k and closed in the high K. Canola with a higher supply of potassium also had a higher rate of photosynthesis under water stress than canola with a low level of applied potassium. The opening of the stomata and associated higher transpiration rate and stomatal conductance may be caused by an interaction effect of the plant hormones abscisic acid and ethylene depending on the level of potassium and water stress that the canola plant is exposed to.

. Thus, further work should focus on measuring abscisic acid and ethylene levels under varying water and potassium treatments in order to understand the mechanisms behind this response and how best to mitigate the effects of the stress. In addition to that, research should be done on the interaction between potassium and drought by studying the canola plants grown continually at different soil moisture and potassium levels in particular focusing on the 40-60 mg kg-1 soil K level where most changes have been observed in order to determine any effects on plant size, shoot:root ratio, relative turgor pressure and transpiration per leaf area. Especially to monitor any changes in shoot:root ratio, which may be a useful morphological trait for selection of drought tolerance in canola. The interaction between nitrogen and potassium on canola response to drought also needs further investigation because it may be necessary to apply higher amounts of potassium fertiliser when applying relatively high nitrogen rates.

Why my research is important

The intended outcome of the project will significantly contribute to the Australian Grains Industry. Canola production in Europe is relatively reliable, whereas in Western Australia it is vulnerable to large variations in rainfall and frequent droughts. Soil water is the most limiting factor for crop production in Western Australia and greater water use efficiency of canola would contribute to yield and improve the reliability of the crop.

Due to natural downward displacement and the removal of potassium from soils with hay and grains, most of the sandy soils, comprising 75% of the 18 million ha used for cropping in Western Australia have now become potassium (K) deficient (Brennan and Bolland 2007). Therefore, a better understanding of the physiological properties of canola and a practical approach for Australian farm managers to enhance site specific potassium fertilisation in canola could contribute to a more profitable and sustainable precision farming method.


  • School of Plant Biology,
  • GRDC Top-up scholarship,
  • K+S Kalium GmbH, Georg-August University Goettingen