Definition of a Limit Exercises

These exercises have been written to consolidate your understanding of the Definition of a Limit workshop.

Question 1

For each of the following limits, find δ in terms of ϵ.

(a) $\lim_{x \to 2} x + 2 = 4$
(b) $\lim_{x \to 5} 2x - 3 = 7$
(c) $\lim_{x \to 2} 4x + 3 = 11$
(d) $\lim_{x \to 1} 6 - 2x = 4$
(e) $\lim_{x \to 6} x^2 - 30 = 6$
(f) $\lim_{x \to 2} \frac{1}{x} = \frac{1}{2}$
(g) $\lim_{x \to 9} \frac{1}{x} - 3 = \frac{1}{6}$
(h) $\lim_{x \to 2} \frac{1}{2x + 1} = \frac{1}{5}$

Question 2

Use the definition of a limit to prove each of the above limits.
Question 3

Use the definition of a limit as $x \to \pm \infty$ to prove each of the following limits.

(a) $\lim_{x \to \infty} \frac{1}{x} + 2 = 2$

(b) $\lim_{x \to \infty} \frac{1}{3 + x} = 0$

(c) $\lim_{x \to \infty} \frac{3x + 2}{3x + 4} = 1$

(d) $\lim_{x \to -\infty} \frac{1}{x^3} = 0$

Using STUDY Smarter Resources

This resource was developed for UWA students by the STUDY Smarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDY Smarter heading and the UWA crest.