Definition of a Limit Solutions

Here are the solutions to the Definition of a Limit exercises.

Question 1

For each of the following limits, find δ in terms of ϵ.

(a) $\lim_{x \to 2} x + 2 = 4$

We wish to keep $|x + 2 - 4| < \epsilon$ for any $\epsilon > 0$, by keeping $|x - 2| < \delta$. It is easy to simplify $|x + 2 - 4| < \epsilon$ to $|x - 2| < \epsilon$. So, we see in this case that $\delta = \epsilon$.

(b) $\lim_{x \to 5} 2x - 3 = 7$

We wish to keep $|2x - 3 - 7| < \epsilon$ for any $\epsilon > 0$, by keeping $|x - 5| < \delta$. It is easy to do this as follows:

$$|2x - 3 - 7| < \epsilon$$

$$|2x - 10| < \epsilon$$

$$2|x - 5| < \epsilon$$

$$|x - 5| < \epsilon/2$$

So, we see in this case that $\delta = \epsilon/2$.

(c) $\lim_{x \to 2} 4x + 3 = 11$

We wish to keep $|4x + 3 - 11| < \epsilon$ for any $\epsilon > 0$, by keeping $|x - 2| < \delta$. It is easy to do this as follows:

$$|4x + 3 - 11| < \epsilon$$

$$|4x - 8| < \epsilon$$
\[4|x - 2| < \epsilon\]

\[|x - 2| < \epsilon/4\]

So, we see in this case that \(\delta = \epsilon/4\).

(d) \(\lim_{x \to 1} 6 - 2x = 4\)

We wish to keep \(|6 - 2x - 4| < \epsilon\) for any \(\epsilon > 0\), by keeping \(|x - 1| < \delta\). It is easy to do this as follows:

\[|6 - 2x - 4| < \epsilon\]

\[|2 - 2x| < \epsilon\]

\[|2x - 2| < \epsilon\]

\[2|x - 1| < \epsilon\]

\[|x - 1| < \epsilon/2\]

So, we see in this case that \(\delta = \epsilon/2\).

(e) \(\lim_{x \to 6} x^2 - 30 = 6\)

We wish to keep \(|x^2 - 30 - 6| < \epsilon\) for any \(\epsilon > 0\), by keeping \(|x - 6| < \delta\). This is harder than the linear case.

\[|x^2 - 30 - 6| < \epsilon\]

\[|x^2 - 36| < \epsilon\]

\[|(x - 6)(x + 6)| < \epsilon\]

\[|x - 6|.|x + 6| < \epsilon\]
\[|x - 6| < \frac{\epsilon}{|x + 6|}\]

Now \(|x + 6|\) is going to be pretty close to 12, so to be safe we can choose \(\delta = \epsilon/13\).

\[(f)\ \lim_{x \to 2} \frac{1}{x} = \frac{1}{2}\]

We wish to keep \(|1/x - 1/2| < \epsilon\) for any \(\epsilon > 0\), by keeping \(|x - 2| < \delta\).

\[|1/x - 1/2| < \epsilon\]

\[|\frac{2 - x}{2x}| < \epsilon\]

\[\frac{|x - 2|}{|2x|} < \epsilon\]

\[|x - 2| < \epsilon|2x|\]

Now \(2x\) is pretty close to 4, so to be safe we choose \(\delta = 3\epsilon\).

\[(g)\ \lim_{x \to 9} \frac{1}{(x - 3)} = \frac{1}{6}\]

We wish to keep \(|1/(x - 3) - 1/6| < \epsilon\) for any \(\epsilon > 0\), by keeping \(|x - 9| < \delta\).

\[|1/(x - 3) - 1/6| < \epsilon\]

\[|\frac{6 - x + 3}{6(x - 3)}| < \epsilon\]

\[|\frac{9 - x}{6(x - 3)}| < \epsilon\]

\[|x - 9| < \epsilon|6(x - 3)|\]

Now \(6(x - 3)\) is pretty close to 36, so to be safe we choose \(\delta = 35\epsilon\).

\[(h)\ \lim_{x \to 2} \frac{1}{(2x + 1)} = \frac{1}{5}\]

We wish to keep \(|1/(2x + 1) - 1/5| < \epsilon\) for any \(\epsilon > 0\), by keeping \(|x - 2| < \delta\).

\[|1/(2x + 1) - 1/5| < \epsilon\]
\[
\left| \frac{5-2x-1}{5(2x+1)} \right| < \epsilon
\]
\[
\left| \frac{4-2x}{5(2x+1)} \right| < \epsilon
\]
\[
\left| \frac{2}{5(2x+1)} \right| |x-2| < \epsilon
\]
\[
|x-2| < \epsilon |5(2x+1)|/2
\]

Now \(|5(2x+1)|/2 \) is pretty close to 12.5, so to be safe we choose \(\delta = 12 \epsilon \).

Question 2

Use the definition of a limit to **prove** each of the above limits.

(a) \(\lim_{x \to 2} x + 2 = 4 \)

If we choose \(\delta = \epsilon \) and assume \(|x - 2| < \delta = \epsilon \), then
\[
|x + 2 - 4| = |x - 2| < \delta = \epsilon
\]
and we are done.

(b) \(\lim_{x \to 5} 2x - 3 = 7 \)

If we choose \(\delta = \epsilon/2 \) and assume \(|x - 5| < \delta = \epsilon/2 \), then
\[
|2x - 3 - 7| = |2x - 10| = 2|x - 5| < 2\delta = 2\epsilon/2 = \epsilon
\]
and we are done.

(c) \(\lim_{x \to 2} 4x + 3 = 11 \)

If we choose \(\delta = \epsilon/4 \) and assume \(|x - 2| < \delta = \epsilon/4 \), then
\[
|4x + 3 - 11| = |4x - 8| = 4|x - 2| < 4\delta = 4\epsilon/4 = \epsilon
\]
and we are done.
(d) \(\lim_{x \to 6} 6 - 2x = 4 \)
If we choose \(\delta = \epsilon/2 \) and assume \(|x - 1| < \delta = \epsilon/2 \), then

\[
6 - 2x - 4 = |2 - 2x| = 2|x - 1| < 2\delta = 2\epsilon/2 = \epsilon
\]
and we are done.

(e) \(\lim_{x \to 6} x^2 - 30 = 6 \)
If we choose \(\delta = \epsilon/13 \) and assume \(|x - 6| < \delta = \epsilon/13 \), then

\[
|x^2 - 30 - 6| = |x^2 - 36| = |x - 6||x + 6| < \delta|x + 6| = \epsilon \frac{|x + 6|}{13} < \epsilon
\]
provided we are close enough such that \(|x + 6| < 13 \). This is reasonable, as we work under the assumption that \(\epsilon \) (and thus \(\delta \)) will be small.

(f) \(\lim_{x \to 2} 1/x = 1/2 \)
If we choose \(\delta = 3\epsilon \) and assume \(|x - 2| < \delta = 3\epsilon \), then

\[
|1/x - 1/2| = \left| \frac{2 - x}{2x} \right| = \frac{|x - 2|}{|2x|} < \frac{\delta}{|2x|} = \frac{3\epsilon}{|2x|} < \epsilon
\]
provided \(x \) is close enough to 2 such that \(3 < |2x| \).

(g) \(\lim_{x \to 9} 1/(x - 3) = 1/6 \)
If we choose \(\delta = 35\epsilon \) and assume \(|x - 9| < \delta = 35\epsilon \), then

\[
|1/(x - 3) - 1/6| = \left| \frac{6 - x + 3}{6(x - 3)} \right| = \frac{|x - 9|}{|6(x - 3)|} < \frac{\delta}{|6(x - 3)|} = \frac{35\epsilon}{|6(x - 3)|} < \epsilon
\]
provided \(x \) is close enough to 9 such that \(35 < 6|x - 3| \).

(h) \(\lim_{x \to 2} 1/(2x + 1) = 1/5 \)
If we choose \(\delta = 12\epsilon \) and assume \(|x - 2| < \delta = 12\epsilon \), then

\[
|1/(2x+1) - 1/5| = \left| \frac{5 - 2x - 1}{5(2x + 1)} \right| = \frac{|4 - 2x|}{|5(2x + 1)|} = \frac{2|x - 2|}{|5(2x + 1)|} < \frac{2\delta}{|5(2x + 1)|} = \frac{12\epsilon}{|5(2x + 1)|} < \epsilon
\]
provided \(x \) is close enough to 2 such that \(24 < 5|2x + 1| \).
Question 3

Use the definition of a limit as $x \to \pm\infty$ to prove each of the following limits.

(a) $\lim_{x\to\infty} \frac{1}{x} + 2 = 2$

We need to identify a good candidate for N in terms of ϵ, and then show that restricting $x > N$ will force $|\frac{1}{x} + 2 - 2| < \epsilon$. We work backwards as usual:

$|\frac{1}{x} + 2 - 2| < \epsilon$

$|\frac{1}{x}| < \epsilon$

$\frac{1}{x} < \epsilon$

$1/\epsilon < x$

So let’s choose $N = 1/\epsilon$. If we assume that $x > N = 1/\epsilon$ we have

$|\frac{1}{x} + 2 - 2| = |\frac{1}{x}| = 1/x < 1/N = 1/(1/\epsilon) = \epsilon$

and so we are done.

(b) $\lim_{x\to\infty} \frac{1}{3 + x} = 0$

We need to identify a good candidate for N in terms of ϵ, and then show that restricting $x > N$ will force $|\frac{1}{3 + x} - 0| < \epsilon$. We work backwards as usual:

$|\frac{1}{3 + x} - 0| < \epsilon$

$|\frac{1}{3 + x}| < \epsilon$

$\frac{1}{3 + x} < \epsilon$

$1/\epsilon < 3 + x$

$1/\epsilon - 3 < x$
So let’s choose $N = 1/\epsilon - 3$. If we assume that $x > N = 1/\epsilon - 3$ we have

$$|1/(3 + x) - 0| = |1/(3 + x)| = 1/(3 + x) < 1/(3 + N) = 1/(3 + 1/\epsilon - 3) = 1/(1/\epsilon) = \epsilon$$

and so we are done.

(c) $\lim_{x \to \infty} (3x + 2)/(3x + 4) = 1$

We need to identify a good candidate for N in terms of ϵ, and then show that restricting $x > N$ will force $|(3x + 2)/(3x + 4) - 1| < \epsilon$. We work backwards as usual:

$$|(3x + 2)/(3x + 4) - 1| < \epsilon$$

$$|(3x + 2)/(3x + 4) - (3x + 4)/(3x + 4)| < \epsilon$$

$$|(-2)/(3x + 4)| < \epsilon$$

$$2/(3x + 4) < \epsilon$$

$$2/\epsilon < 3x + 4$$

$$\frac{2/\epsilon - 4}{3} < x$$

So let’s choose $N = \frac{2/\epsilon - 4}{3}$. If we assume that $x > N = \frac{2/\epsilon - 4}{3}$ we have

$$|(3x+2)/(3x+4)-1| = |(-2)/(3x+4)| = 2/(3x+4) < 2/(3N+4) = 2/(3\cdot\frac{2/\epsilon - 4}{3} + 4) = 2/(2/\epsilon) = \epsilon$$

and so we are done.

(d) $\lim_{x \to -\infty} 1/(x^3) = 0$

We need to identify a good candidate for N in terms of ϵ, and then show that restricting $x < N$ will force $|1/x^3 - 0| < \epsilon$. We work backwards as usual:

$$|1/x^3 - 0| < \epsilon$$
\[|1/x^3| < \epsilon \]

\[-1/x^3 < \epsilon \]

\[-1/\epsilon > x^3 \]

\[\sqrt[3]{-1/\epsilon} > x \]

So let’s choose \(N = \sqrt[3]{-1/\epsilon} \). If we assume that \(x < N = \sqrt[3]{-1/\epsilon} \) we have

\[|1/x^3 - 0| = |1/x^3| = -1/x^3 < -1/N^3 = -1/(-1/\epsilon) = \epsilon \]

and we are done.

Using STUDYSmarter Resources

This resource was developed for UWA students by the STUDYSmarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDYSmarter heading and the UWA crest.