Please Note

These pdf slides are configured for viewing on a computer screen.

Viewing them on hand-held devices may be difficult as they require a “slideshow” mode.

Do not try to print them out as there are many more pages than the number of slides listed at the bottom right of each screen.

Apologies for any inconvenience.
Laplace Transforms: Heaviside function

Numeracy Workshop

Geoff Coates
Introduction

These slides cover the application of Laplace Transforms to Heaviside functions. See the Laplace Transforms workshop if you need to revise this topic first. These slides are not a resource provided by your lecturers in this unit.
Introduction

These slides cover the application of Laplace Transforms to Heaviside functions. See the Laplace Transforms workshop if you need to revise this topic first. These slides are not a resource provided by your lecturers in this unit.

Workshop resources: These slides are available online:

www.studysmarter.uwa.edu.au → Numeracy and Maths → Online Resources
Introduction

These slides cover the application of Laplace Transforms to Heaviside functions. See the Laplace Transforms workshop if you need to revise this topic first. These slides are not a resource provided by your lecturers in this unit.

Workshop resources: These slides are available online:

www.studysmarter.uwa.edu.au → Numeracy and Maths → Online Resources

Next Workshop: See your Workshop Calendar →

www.studysmarter.uwa.edu.au
Introduction

These slides cover the application of Laplace Transforms to Heaviside functions. See the Laplace Transforms workshop if you need to revise this topic first. These slides are not a resource provided by your lecturers in this unit.

Workshop resources: These slides are available online:

www.studysmarter.uwa.edu.au → Numeracy and Maths → Online Resources

Next Workshop: See your Workshop Calendar →

www.studysmarter.uwa.edu.au

Drop-in Study Sessions: Monday, Wednesday, Thursday, 10am-12pm, Meeting Room 2204, Second Floor, Social Sciences South Building, every week.
Introduction

These slides cover the application of Laplace Transforms to Heaviside functions. See the Laplace Transforms workshop if you need to revise this topic first. These slides are not a resource provided by your lecturers in this unit.

Workshop resources: These slides are available online:

www.studysmarter.uwa.edu.au → Numeracy and Maths → Online Resources

Next Workshop: See your Workshop Calendar →

www.studysmarter.uwa.edu.au

Drop-in Study Sessions: Monday, Wednesday, Thursday, 10am-12pm, Meeting Room 2204, Second Floor, Social Sciences South Building, every week.

Email: geoff.coates@uwa.edu.au
Introduction

Piecewise functions are common in many applications of mathematics, reflecting different behaviour of systems in different parts of a domain.
Introduction

Piecewise functions are common in many applications of mathematics, reflecting different behaviour of systems in different parts of a domain.

Example: \(f(t) = \begin{cases} 0 & , \ t < 1 \\ 2 & , \ 1 \leq t < 3 \\ t & , \ t \geq 3 \end{cases} \)
Finding Laplace Transforms of piecewise functions is difficult unless they can be rewritten as functions with a *single* form.
Finding Laplace Transforms of piecewise functions is difficult unless they can be rewritten as functions with a *single* form.

To do this we need to “switch” branches of the piecewise function “on and off” for different parts of the domain.
Finding Laplace Transforms of piecewise functions is difficult unless they can be rewritten as functions with a *single* form.

To do this we need to “switch” branches of the piecewise function “on and off” for different parts of the domain.

The **Heaviside function** can do this:

\[
H(t) = \begin{cases}
0 & ,
\text{ } t < 0 \\
1 & ,
\text{ } t \geq 0
\end{cases}
\]
The Heaviside function

Multiply a function $g(t)$ by $H(t)$ and it will “turn $g(t)$ on” at $t = 0$:

If $g(t) = t^2 + 1$, then $g(t)H(t)$ looks like this:
The Heaviside function

Multiply a function $g(t)$ by $H(t)$ and it will “turn $g(t)$ on” at $t = 0$:

If $g(t) = t^2 + 1$, then $g(t)H(t)$ looks like this:
Multiply a function $g(t)$ by $H(t)$ and it will “turn $g(t)$ on” at $t = 0$:

If $g(t) = t^2 + 1$, then $g(t)H(t)$ looks like this:

$$g(t)H(t)$$
The Heaviside function

To “turn functions on” at points other than zero, say a, we replace t by $t - a$:

$$H(t - a) = \begin{cases}
0, & t < a \\
1, & t \geq a
\end{cases}$$
The Heaviside function

To “turn functions on” at points other than zero, say a, we replace t by $t - a$:

$$H(t - a) = \begin{cases}
0 & , \\
1 & , t \geq a
\end{cases}$$
The Heaviside function

Multiply a function \(g(t) \) by \(H(t - a) \) and it will “turn \(g(t) \) on” at \(t = a \):

If \(g(t) = t^2 + 1 \), then \(g(t) H(t - 1) \) looks like this:
The Heaviside function

Multiply a function $g(t)$ by $H(t - a)$ and it will “turn $g(t)$ on” at $t = a$:

If $g(t) = t^2 + 1$, then $g(t)H(t - 1)$ looks like this:
The Heaviside function

Multiply a function $g(t)$ by $H(t - a)$ and it will “turn $g(t)$ on” at $t = a$:

If $g(t) = t^2 + 1$, then $g(t)H(t - 1)$ looks like this:

$$g(t)H(t - 1)$$
The Heaviside function

We can also “turn functions on at a and off again at b” by combining $H(t - a)$ and $H(t - b)$.
The Heaviside function

We can also “turn functions on at a and off again at b” by combining $H(t - a)$ and $H(t - b)$.

\[
H(t - a) = \begin{cases}
0 & , \quad t < a \\
1 & , \quad t \geq a
\end{cases}
\]

For $t < a$,
\[
H(t - a) - H(t - b) = 0 - 0 = 0.
\]

For $a \leq t < b$,
\[
H(t - a) - H(t - b) = 1 - 0 = 1.
\]

For $t \geq b$,
\[
H(t - a) - H(t - b) = 1 - 1 = 0.
\]
The Heaviside function

We can also “turn functions on at a and off again at b” by combining $H(t - a)$ and $H(t - b)$.

$$H(t - a) = \begin{cases} 0 & , t < a \\ 1 & , t \geq a \end{cases}$$

$$H(t - b) = \begin{cases} 0 & , t < b \\ 1 & , t \geq b \end{cases}$$
The Heaviside function

We can also “turn functions on at a and off again at b” by combining $H(t - a)$ and $H(t - b)$.

$$H(t - a) = \begin{cases} 0 & , \quad t < a \\ 1 & , \quad t \geq a \end{cases}$$

$$H(t - b) = \begin{cases} 0 & , \quad t < b \\ 1 & , \quad t \geq b \end{cases}$$

For $t < a$, $H(t - a) - H(t - b) = 0 - 0 = 0$.
The Heaviside function

We can also “turn functions on at a and off again at b” by combining $H(t - a)$ and $H(t - b)$.

\[
H(t - a) = \begin{cases}
0 & , \quad t < a \\
1 & , \quad t \geq a
\end{cases}
\]

\[
H(t - b) = \begin{cases}
0 & , \quad t < b \\
1 & , \quad t \geq b
\end{cases}
\]

For $t < a$, \(H(t - a) - H(t - b) = 0 - 0 = 0 \).

For $a \leq t < b$, \(H(t - a) - H(t - b) = 1 - 0 = 1 \).
The Heaviside function

We can also “turn functions on at a and off again at b” by combining $H(t - a)$ and $H(t - b)$.

\[
H(t - a) = \begin{cases}
0 & , \quad t < a \\
1 & , \quad t \geq a
\end{cases} \\
H(t - b) = \begin{cases}
0 & , \quad t < b \\
1 & , \quad t \geq b
\end{cases}
\]

For $t < a$, \quad $H(t - a) - H(t - b) = 0 - 0 = 0$.

For $a \leq t < b$, \quad $H(t - a) - H(t - b) = 1 - 0 = 1$.

For $t \geq b$, \quad $H(t - a) - H(t - b) = 1 - 1 = 0$.
The Heaviside function

\[H(t - a) - H(t - b) = \begin{cases}
0 , & t < a \\
1 , & a \leq t < b \\
0 , & t \geq b
\end{cases} \]
The Heaviside function

Back to our example:

\[f(t) = \begin{cases}
0 & , \quad t < 1 \\
2 & , \quad 1 \leq t < 3 \\
t & , \quad t \geq 3
\end{cases} \]
The Heaviside function

Back to our example:

\[f(t) = \begin{cases}
0 & , \quad t < 1 \\
2 & , \quad 1 \leq t < 3 \\
t & , \quad t \geq 3
\end{cases} \]

This *piecewise function* can now be replaced by a *single* expression as follows:

\[f(t) = \]

Note: In this case, there is no need to "turn on" on the first branch because this is already zero.
The Heaviside function

Back to our example:

\[f(t) = \begin{cases}
0 & , \quad t < 1 \\
2 & , \quad 1 \leq t < 3 \\
t & , \quad t \geq 3
\end{cases} \]

This piecewise function can now be replaced by a single expression as follows:

\[f(t) = 2[H(t - 1) - H(t - 3)] + \\
\text{turn 2nd branch on} \\
\text{between } t = 1 \text{ and } 3 \]
The Heaviside function

Back to our example:

\[
f(t) = \begin{cases}
0 & , \quad t < 1 \\
2 & , \quad 1 \leq t < 3 \\
t & , \quad t \geq 3
\end{cases}
\]

This *piecewise function* can now be replaced by a *single* expression as follows:

\[
f(t) = 2[H(t - 1) - H(t - 3)] + tH(t - 3)
\]

- turn 2nd branch on between \(t = 1 \) and 3
- turn 3rd branch on at \(t = 3 \)
The Heaviside function

Back to our example:

\[
f(t) = \begin{cases}
0 & , \quad t < 1 \\
2 & , \quad 1 \leq t < 3 \\
t & , \quad t \geq 3
\end{cases}
\]

This piecewise function can now be replaced by a single expression as follows:

\[
f(t) = 2[H(t - 1) - H(t - 3)] + tH(t - 3)
\]

Note: In this case, there is no need to “turn on” on the first branch because this is already zero.
Laplace transform of the Heaviside function

\[f(t) = 2(H(t - 1) - H(t - 3)) + tH(t - 3) \]
Laplace transform of the Heaviside function

\[f(t) = 2(H(t - 1) - H(t - 3)) + tH(t - 3) \]
\[= 2H(t - 1) - 2H(t - 3) + tH(t - 3) \]
Laplace transform of the Heaviside function

\[f(t) = 2(H(t - 1) - H(t - 3)) + tH(t - 3) \]

\[= 2H(t - 1) - 2H(t - 3) + tH(t - 3) \]

The Laplace Transform of \(f(t) \) is then
Laplace transform of the Heaviside function

\[f(t) = 2(H(t - 1) - H(t - 3)) + tH(t - 3) \]
\[= 2H(t - 1) - 2H(t - 3) + tH(t - 3) \]

The Laplace Transform of \(f(t) \) is then

\[\mathcal{L}[f(t)] = \mathcal{L}[2H(t - 1) - 2H(t - 3) + tH(t - 3)] \]
Laplace transform of the Heaviside function

\[f(t) = 2(H(t - 1) - H(t - 3)) + tH(t - 3) \]

\[= 2H(t - 1) - 2H(t - 3) + tH(t - 3) \]

The Laplace Transform of \(f(t) \) is then
\[
\mathcal{L}[f(t)] = \mathcal{L}[2H(t - 1) - 2H(t - 3) + tH(t - 3)]
\]
\[
F(s) = 2\mathcal{L}[H(t - 1)] - 2\mathcal{L}[H(t - 3)] + \mathcal{L}[tH(t - 3)]
\]
Laplace transform of the Heaviside function

\[f(t) = 2(H(t - 1) - H(t - 3)) + tH(t - 3) \]
\[= 2H(t - 1) - 2H(t - 3) + tH(t - 3) \]

The Laplace Transform of \(f(t) \) is then

\[\mathcal{L}[f(t)] = \mathcal{L}[2H(t - 1) - 2H(t - 3) + tH(t - 3)] \]
\[F(s) = 2\mathcal{L}[H(t - 1)] - 2\mathcal{L}[H(t - 3)] + \mathcal{L}[tH(t - 3)] \]

Now we need to know something about the Laplace Transforms of Heaviside functions.
Laplace transform of the Heaviside function

\[f(t) = 2(H(t - 1) - H(t - 3)) + tH(t - 3) \]
\[= 2H(t - 1) - 2H(t - 3) + tH(t - 3) \]

The Laplace Transform of \(f(t) \) is then
\[\mathcal{L}[f(t)] = \mathcal{L}[2H(t - 1) - 2H(t - 3) + tH(t - 3)] \]
\[F(s) = 2\mathcal{L}[H(t - 1)] - 2\mathcal{L}[H(t - 3)] + \mathcal{L}[tH(t - 3)] \]

Now we need to know something about the Laplace Transforms of Heaviside functions.

\[\mathcal{L}[H(t - 1)] = ? \quad \mathcal{L}[H(t - 3)] = ? \quad \mathcal{L}[tH(t - 3)] = ? \]
Laplace transform of the Heaviside function

Theorem 8.27 in the MATH1002 notes says:

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]
Laplace transform of the Heaviside function

Theorem 8.27 in the MATH1002 notes says:

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

We need the Laplace transform of just a Heaviside function, \(\mathcal{L}[H(t - a)] \) so it makes sense to choose \(f(t) = 1 \). Why?
Laplace transform of the Heaviside function

Theorem 8.27 in the MATH1002 notes says:

$$\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s)$$

We need the Laplace transform of just a Heaviside function, $\mathcal{L}[H(t - a)]$ so it makes sense to choose $f(t) = 1$. Why?

This works because $f(t - a) = 1$ as well.
Theorem 8.27 in the MATH1002 notes says:

\[
\mathcal{L}[f(t - a)H(t - a)] = e^{-as} F(s)
\]

We need the Laplace transform of just a Heaviside function, \(\mathcal{L}[H(t - a)] \) so it makes sense to choose \(f(t) = 1 \). Why?

This works because \(f(t - a) = 1 \) as well. We know that \(F(s) = \frac{1}{s} \), so:
Laplace transform of the Heaviside function

Theorem 8.27 in the MATH1002 notes says:

\[\mathcal{L}[f(t-a)H(t-a)] = e^{-as}F(s) \]

We need the Laplace transform of just a Heaviside function, \(\mathcal{L}[H(t-a)] \) so it makes sense to choose \(f(t) = 1 \). Why?

This works because \(f(t-a) = 1 \) as well. We know that \(F(s) = \frac{1}{s} \), so:

\[\mathcal{L}[H(t-a)] = \]
Theorem 8.27 in the MATH1002 notes says:

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

We need the Laplace transform of just a Heaviside function, \(\mathcal{L}[H(t - a)] \) so it makes sense to choose \(f(t) = 1 \). Why?

This works because \(f(t - a) = 1 \) as well. We know that \(F(s) = \frac{1}{s} \), so:

\[\mathcal{L}[H(t - a)] = e^{-as}F(s) \]
Laplace transform of the Heaviside function

Theorem 8.27 in the MATH1002 notes says:

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

We need the Laplace transform of just a Heaviside function, \(\mathcal{L}[H(t - a)] \) so it makes sense to choose \(f(t) = 1 \). Why?

This works because \(f(t - a) = 1 \) as well. We know that \(F(s) = \frac{1}{s} \), so:

\[\mathcal{L}[H(t - a)] = e^{-as}F(s) \]
\[= e^{-as} \times \frac{1}{s} \]
Laplace transform of the Heaviside function

Theorem 8.27 in the MATH1002 notes says:

\[
\mathcal{L}[f(t-a)H(t-a)] = e^{-as}F(s)
\]

We need the Laplace transform of just a Heaviside function, \(\mathcal{L}[H(t-a)] \) so it makes sense to choose \(f(t) = 1 \). Why?

This works because \(f(t-a) = 1 \) as well. We know that \(F(s) = \frac{1}{s} \), so:

\[
\mathcal{L}[H(t-a)] = e^{-as}F(s)
\]

\[
= e^{-as} \times \frac{1}{s}
\]

\[
= \frac{e^{-as}}{s}
\]
Theorem 8.27 in the MATH1002 notes says:

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

We need the Laplace transform of just a Heaviside function, \(\mathcal{L}[H(t - a)] \) so it makes sense to choose \(f(t) = 1 \). Why?

This works because \(f(t - a) = 1 \) as well. We know that \(F(s) = \frac{1}{s} \), so:

\[
\begin{align*}
\mathcal{L}[H(t - a)] &= e^{-as}F(s) \\
&= e^{-as} \times \frac{1}{s} \\
&= \frac{e^{-as}}{s}
\end{align*}
\]

Now we know that \(\mathcal{L}[H(t - 1)] = \frac{e^{-s}}{s} \) and \(\mathcal{L}[H(t - 3)] = \frac{e^{-3s}}{s} \).
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as} F(s) \]

To find \(\mathcal{L}[tH(t - 3)] \),
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

To find \(\mathcal{L}[tH(t - 3)] \), make \(f(t) = t \) (so \(F(s) = \frac{1}{s^2} \)).
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

To find \(\mathcal{L}[tH(t - 3)] \), make \(f(t) = t \) (so \(F(s) = \frac{1}{s^2} \)).

The theorem uses \(f(t - 3) = t - 3 \) so we need to make an adjustment before we can apply it to \(\mathcal{L}[tH(t - 3)] \):
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

To find \(\mathcal{L}[tH(t - 3)] \), make \(f(t) = t \) (so \(F(s) = \frac{1}{s^2} \)).

The theorem uses \(f(t - 3) = t - 3 \) so we need to make an adjustment before we can apply it to \(\mathcal{L}[tH(t - 3)] \):

\[\mathcal{L}[tH(t - 3)] = \]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

To find \(\mathcal{L}[tH(t - 3)] \), make \(f(t) = t \) (so \(F(s) = \frac{1}{s^2} \)).

The theorem uses \(f(t - 3) = t - 3 \) so we need to make an adjustment before we can apply it to \(\mathcal{L}[tH(t - 3)] \):

\[\mathcal{L}[tH(t - 3)] = \mathcal{L}[(t - 3)H(t - 3) + 3H(t - 3)] \]
Laplace transform of the Heaviside function

\[
\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s)
\]

To find \(\mathcal{L}[tH(t - 3)] \), make \(f(t) = t \) (so \(F(s) = \frac{1}{s^2} \)).

The theorem uses \(f(t - 3) = t - 3 \) so we need to make an adjustment before we can apply it to \(\mathcal{L}[tH(t - 3)] \):

\[
\mathcal{L}[tH(t - 3)] = \mathcal{L}[(t - 3)H(t - 3)] + 3H(t - 3)
\]
\[
= \mathcal{L}[(t - 3)H(t - 3)] + 3\mathcal{L}[H(t - 3)]
\]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

To find \(\mathcal{L}[tH(t - 3)] \), make \(f(t) = t \) \(\left(\text{so } F(s) = \frac{1}{s^2} \right) \).

The theorem uses \(f(t - 3) = t - 3 \) so we need to make an adjustment before we can apply it to \(\mathcal{L}[tH(t - 3)] \):

\[
\begin{align*}
\mathcal{L}[tH(t - 3)] &= \mathcal{L}[(t - 3)H(t - 3)] + 3H(t - 3) \\
&= \mathcal{L}[(t - 3)H(t - 3)] + 3\mathcal{L}[H(t - 3)] \\
&= e^{-3s} \times \frac{1}{s^2}
\end{align*}
\]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

To find \(\mathcal{L}[tH(t - 3)] \), make \(f(t) = t \) (so \(F(s) = \frac{1}{s^2} \)).

The theorem uses \(f(t - 3) = t - 3 \) so we need to make an adjustment before we can apply it to \(\mathcal{L}[tH(t - 3)] \):

\[
\begin{align*}
\mathcal{L}[tH(t - 3)] &= \mathcal{L}[(t - 3)H(t - 3)] + 3H(t - 3) \\
&= \mathcal{L}[(t - 3)H(t - 3)] + 3\mathcal{L}[H(t - 3)] \\
&= e^{-3s} \times \frac{1}{s^2} + 3 \frac{e^{-3s}}{s}
\end{align*}
\]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t-a)H(t-a)] = e^{-as}F(s) \]

To find \(\mathcal{L}[tH(t-3)] \), make \(f(t) = t \) (so \(F(s) = \frac{1}{s^2} \)).

The theorem uses \(f(t-3) = t-3 \) so we need to make an adjustment before we can apply it to \(\mathcal{L}[tH(t-3)] \):

\[
\mathcal{L}[tH(t-3)] = \mathcal{L}[(t-3)H(t-3)] + 3H(t-3)
\]

\[
= \mathcal{L}[(t-3)H(t-3)] + 3\mathcal{L}[H(t-3)]
\]

\[
= e^{-3s} \times \frac{1}{s^2} + \frac{3e^{-3s}}{s}
\]

\[
= \frac{e^{-3s}}{s^2} + \frac{3e^{-3s}}{s}
\]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

Note: The method we just used is essentially what the MM2 notes does.
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

Note: The method we just used is essentially what the MM2 notes does. You might find it intuitively easier to simply declare \(f(t - 3) = t \).
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as} F(s) \]

Note: The method we just used is essentially what the MM2 notes does. You might find it intuitively easier to simply declare \(f(t - 3) = t \).

The trouble is that \(f(t) = t + 3 \) and we don’t have the Laplace transform of \(t + 3 \). However,
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

Note: The method we just used is essentially what the MM2 notes does. You might find it intuitively easier to simply declare \(f(t - 3) = t \).

The trouble is that \(f(t) = t + 3 \) and we don’t have the Laplace transform of \(t + 3 \). However,

\[F(s) = \mathcal{L}[f(t)] = \]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

Note: The method we just used is essentially what the MM2 notes does. You might find it intuitively easier to simply declare \(f(t - 3) = t \).

The trouble is that \(f(t) = t + 3 \) and we don’t have the Laplace transform of \(t + 3 \). However,

\[F(s) = \mathcal{L}[f(t)] = \mathcal{L}[t + 3] \]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

Note: The method we just used is essentially what the MM2 notes does. You might find it intuitively easier to simply declare \(f(t - 3) = t \).

The trouble is that \(f(t) = t + 3 \) and we don’t have the Laplace transform of \(t + 3 \). However,

\[
F(s) = \mathcal{L}[f(t)] = \mathcal{L}[t + 3] = \mathcal{L}[t] + 3\mathcal{L}[1]
\]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t-a)H(t-a)] = e^{-as}F(s) \]

Note: The method we just used is essentially what the MM2 notes does. You might find it intuitively easier to simply declare \(f(t-3) = t \).

The trouble is that \(f(t) = t + 3 \) and we don’t have the Laplace transform of \(t + 3 \). However,

\[
F(s) = \mathcal{L}[f(t)] = \mathcal{L}[t + 3] = \mathcal{L}[t] + 3\mathcal{L}[1] = \frac{1}{s^2} + 3\frac{1}{s}
\]
Laplace transform of the Heaviside function

\[\mathcal{L}[f(t - a)H(t - a)] = e^{-as}F(s) \]

Note: The method we just used is essentially what the MM2 notes does. You might find it intuitively easier to simply declare \(f(t - 3) = t \).

The trouble is that \(f(t) = t + 3 \) and we don’t have the Laplace transform of \(t + 3 \). However,

\[
F(s) = \mathcal{L}[f(t)] = \mathcal{L}[t + 3] = \mathcal{L}[t] + 3\mathcal{L}[1] = \frac{1}{s^2} + 3 \frac{1}{s}
\]

Using this in the theorem leads to the same answer (with the same amount of work as for the previous method).
Finally, the answer is:

\[F(s) = 2\mathcal{L}[H(t - 1)] - 2\mathcal{L}[H(t - 3)] + \mathcal{L}[tH(t - 3)] \]
Finally, the answer is:

\[F(s) = 2\mathcal{L}[H(t - 1)] - 2\mathcal{L}[H(t - 3)] + \mathcal{L}[tH(t - 3)] \]

\[= \frac{2e^{-s}}{s} - \frac{2e^{-3s}}{s} + \frac{e^{-3s}}{s^2} + \frac{3e^{-3s}}{s} \]
Finally, the answer is:

\[F(s) = 2\mathcal{L}[H(t-1)] - 2\mathcal{L}[H(t-3)] + \mathcal{L}[tH(t-3)] \]

\[= \frac{2e^{-s}}{s} - \frac{2e^{-3s}}{s} + \frac{e^{-3s}}{s^2} + \frac{3e^{-3s}}{s} \]

\[= \frac{2se^{-s} + se^{-3s} + 2e^{-s}}{s^2} \]
Using STUDYSmarter Resources

This resource was developed for UWA students by the STUDYSmarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDYSmarter heading and the UWA crest.