Maths for Science students Solutions

Question 1

Note that $\frac{5}{10}$ is in the same place as $2 \frac{1}{2}$. $\frac{99}{100}$ is just below 1.

Question 2

(a) 1.3
(b) 1.2
(c) 0.75
(d) 0.82
(e) 0.32
(f) 3.875

Question 3

0.005, 0.0404, 0.09, 0.404, 0.9

Question 4

(a) 12.7 km
(b) 5,760,000,000 L
(c) 0.989 m
(d) 600 µL
(e) 0.0000002 ng

Question 5

(a) 0.1 mg
(b) 40,000 kL
(c) 2,345.678 mL
Question 6

(a) \(2 \times 22.99 + 1.008 + 30.974 + 4 \times 15.999 = 141.96\)

(b) \(2 \times 22.99 + 2 \times 32.06 + 3 \times 15.999 = 158.1\)

Question 7

(a) 6 mmol
(b) 93.606 mg

Question 8

Make sure all quantities are in the same sub-units ("milli" seems best since that is how the answer is required.

\(C_1 = 0.05 \text{ M or } 50 \text{ mM}\)

\(V_1 = 500 \mu\text{L or } 0.5 \text{ mL}\)

\(V_2 = 500 \mu\text{L} + 9.5 \text{ mL or } 0.5 \text{ mL} + 9.5 \text{ mL} = 10 \text{ mL}\)

Hence \(C_2 = 2.5 \text{ mM}\)

Question 9

\(C_1 = 7.8 \text{ mg/mL} \) needs to be converted to either mM (mmol/L) (or you could go straight to \(\mu\text{M (\mu mol/L)} \) but that can be easily done later).

There are 1000 mL in a litre so

\(C_1 = 7.8 \text{ mg/mL} = 7800 \text{ mg/L}\).

Converting to moles via the atomic mass means we are looking for a number such that

\(7800 \text{ mg/L} = ? \times 156.01 \text{ mg/L}\).

Dividing 7800 by 156.01 gives a number very close to 50 so

\(7800 \text{ mg/L} = 50 \times 156.01 \text{ mg/L} = 50 \text{ mM}\).

From here, it may be obvious that mixing 1 mL of stock solution with 99 mL of water reduces the concentration to a hundredth of it’s original value, so \(C_2 = 0.5 \text{ mM or } 500 \mu\text{M}\) when converted to the required sub-unit. [This rules out options (a) and (b).]
(The formula gives the same answer for C_2 using $V_1 = 1$ mL, $C_1 = 50$ mM and $V_2 = 1 + 99 = 100$ mL.)

Finally,

$$500 \, \mu \text{M} = 500 \, \mu \text{mol/L}$$

but we only have 100 mL, or one tenth of this amount. Hence, there must be $50 \, \mu \text{mol}$ of solute in the dilute solution. [This makes (c) the correct answer.]

Question 10

Astute readers might spot that option (b) must be incorrect because $10 \, \mu \text{L}$ is only 0.01 mL (decimal point moves back 3 places). If this is added to 9.9 mL of water we only get 9.91 mL of diluted solution instead of the required 10.

From the question $C_1 = 0.5$ M, $V_2 = 10$ mL and $C_2 = 5$ mM and need to find V_1.

C_1 needs to be at the same sub-unit level as the others so change C_1 to 500 mM.

Putting these into the formula gives

$$500V_1 = 5 \times 10 = 50$$

which means that $V_1 = 0.1$ mL (or $\frac{5}{500} = 0.1$ if you need to re-arrange it).

Finally, 0.1 mL is 100 μL in the required units. [This rules out option (d).]

To find the weight (in mg) in the dilute solution, start with the concentration:

$$5 \, \text{mM} = 5 \, \text{mmol per litre} = 5 \times 141.96 \, \text{mg per litre} = 709.8 \, \text{mg per litre}$$

We have 10 mL of dilute solution, or one hundredth of this amount, so there must be 7.098 mg present. This is close to 7.1, which makes (a) the correct answer.

Using STUDY Smarter Resources

This resource was developed for UWA students by the STUDY Smarter team for the numeracy program. When using our resources, please retain them in their original form with both the STUDY Smarter heading and the UWA crest.